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ABSTRACT

A new solution class extending to games with non-topological product set strategies and

multiple payoffs to players is developed without point-to-set mappings or quasi-variational inequalities.

Some properties are developed and an illustrative example comparison to existing notions in re

Pareto efticiency and Generalized Nash equilibria.
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Cone Extremal Solutions of Multi-Payoff Games
with Cross-Constrained Strategy Sets

A. Charnes
Z. M. Huang
J. J. Rousseau
Q. L. Wei

l. Introduction

In classical game-theoretic models the strategy set is the topological product of the
strategy sets of the individual players. Such modeis are inadequate for many purposes in
economics (e.g., policy analysis for regulatory agencies) and elsewhere since they fail to take

explicit account of the interactions between, and constraints on, the players' strategies, and/or
the multiple objectives involved.

Extensions of classical games to include these considerations can be achieved by the
new "dominance cones” method and class of solutions of Charnes, Cooper, Wei and Huang
(1987¢), wherein the idea of nondominated equilibrium points was initiated and discussed.

Nondominated efficient solutions in normed vector spaces were studied by Charnes, Cooper,
Wei and Huang (1987b).

In Section 2 of the present paper we introduce a new concept of “T-nondominated
efficiency” for multi-payoff n-person games with Interacting strategy sets (see Dubey [1986] for
the single payoff non-interacting case), where T denotes a subset of the complete set of
players. Our notion of T-nondominated efficient solutions subsumes generalizations of both
non-dominated equilibrium points (when T consists of single elements ) and nondominated
efficient solutions (when T is the complete set of players) as special cases. The T-nondominated
efficient solutions, as we shall show, covers the spectrum from generalizations of Nash equilibria

to generalizations of Pareto efficiency or optimality, without requiring point-to-set mappings for
their specification.

Some essential properties of T-nondominated efficient solutions are given in Section 3 in
the form of several theorems where we also examine the special case of nondominated
equilibrium points. To date (see Harker [1986} ), the chief generalizations of the Nash equilibrium
notion for games with interactive strategy sets have been vi'a variational inequality or quasi-
variational inequality methods. Harker (1986) gives a two-player example in which only one
general Nash equilibrium can be found using the variational inequality method. In contrast. in
Section 4, our T-nondominated efficient solution notion enables us to determine by simple




calculation all the generalized Nash equilibrium points for this example, and we further show that
none of them is Pareto-efficient.

We then determine the locus of nondominated (Pareto) efficient solutions for this
example and contrast them with the nondominated (Nash) equilibrium points. In our concluding
remarks we suggest a possible role for regulatory agencies in achieving some reconciliation
between the two solution notions in actual cases of policy analysis.

2. Cone Convexity and T-Nondominated Efficiency

In this section we review some relevant results regarding cones and their polar cones for
later use in our development and introduce a new concept of "T-Nondominated Efficiency” for
muiti-payoff interactive n-person games.

Aset S isconvexif x;, x,€ S impliesthat Ax; +(1-1) x; & S forall 0s As1. Aset
Sisaconeif x e Sand A20implythat Ax e S. Sisaconvexconeif Sisacone and is convex.
Thus, S isaconvexconeifandonlyif x;, x,e Sand A;, A, 20 implythat A, x; + A, x; € S.

For an arbitrary set S in EM letx € T, where T denotes the closure of the set S.
Denote the "tangency cone"of Sat x by T (S,x)where T(S,x) = {h € EM:there exists a

sequence {x X} and a sequence {A\X} suchthath = fim A" (x"-X) ,withxk € S, Ak>0, and

Kb o
im )(k = ;}
K —boe
Further denote the (negative) polar cone of S by S* where $* = {ye E™: x ty <Oforall
x € S} and the superscript "t denotes transpose. A cone A in E™ is said to be acute if there

exists an open half-space H = (x€ E™ alx>0,a=0} suchthat A cHU (0}.

The following lemma'’s proof may be found in [1], {2], [9], and [10].
Lemma 2.1: Let Aand Aqbe conesin EM.
(i) i AcAythenA®*> A%,

(i) Int A* = @ifandonlyif Aisacute.




(ii)  When A is acute,
It A* = {ye E™ x'y<O0 forall x € A, x =0} and
An(-A) = {0}
(v) If Ais aconvex conethen(A*)* = A

Definition 2.1:. Let Sbe aconvex setin EMand A be a convex cone in EM. A real-
valued vector function G: S - E" is called "A -concaveonS"if

GAx'+ (1-3) x2) = (AG 1) + (1-0) G(x2) ) € A
forall x!, x2€ Sand Ae (0,1).

Definition 2.2: Let S be a convex setin EM™ and A be a convex cone in EN . A real-
valued vector function G:S » ENis called "A —quasiconcave on S" if

GAxl+ (1-3) ) -Min {G (x) , G(2)}e A
forall x!, x2€Sand Ae (0,1).

where

min (g+(x"), g,(x?))
Min{G(x‘).G(x’)} = :

min (gn(x "), 9alx*))
n
Lemma 2.2: LetShe aconvexsetinEMandA=E, . IfG:S—E"is A-quasi-
concave on S, then the set
Sa = {x €S:G(x)e a+ A} isconvex forevery ae EN.
Proof: Let G be A-quasiconcave onS. Forany ae EN,let x;,xy € Sy and
A e (0,1). Since

GAxl+ (1-2) x2) -Min {G (x}) , G(x2)}e A




plus

G()ea+A, i=1,2 implies Min {G(x'), G(x?) € a+A

we have
GOxl+ (1-3) x2) € Min {G (x}) , G(2)}+ Ac Q+A.
Thus, Axl+ (1-A) x2 € Sq,sothat Sy is convex.
Q.E.D.

Lemma 2.3: Let S beaconvex setin EMand A be aconvexconeinE"G:S »E". If
forany e E",the set

Sa={xe S: G(x) ea+A}
is convex set, then G is A -quasiconcave.

Proof: Foranyx!,x2 € S and A € (0,1),let &= Min{G(x"),G(x3)}. Since Sq is

convex and x!. X2 € Sq,we have
GAxl+ (1=1) x2) € o+A = Min (GXY, G} +A,
that is,
GAxl+ (-1 x2) -Min {G(xY) , G2)}e A

Q.E.D.

n
Lemma 2.4: Let S be a convex setin E", A> E. be aconvex cone, and G: S - E"

be a real-valued vector function. If G is A ~concave on S then G is A —quasiconcave on S.

Proof: Let Gbe A —concave onS. Then, forany x!,x2 € Sand A € (0,1), we have
G(Axl+ (-2 x2) - (AG (<) + (1-1) G(P) ) € A.

Since AG (x!) +(1-A) G (x2) 2 Min {G(x"),G (x3)}




we have
G (Axl+ (1-1) x2) — Min {G(x"), G(x)))

€ AG (x!) +(1-A)G(x2) -Min {G(x1), G(x2) } + AcA

Q.E.D.

We now give three lemmas, originally stated and proved in [1] and [2]. For further
properties of cones the reader is referred to [7], [8] and [10}].

Lemma 2.5: Let A be a closed convex cone in EN, S be a convex setin E™ , and

G : S -» EN be differentiable in an open set which contains S. If Gis A =concave on S, then for
every x1,x2 € S we have

Gx)+ VG x2x1) € G(x3) +A.
Lemma 2.6: Let S be a convex setin E™ and A be a convex cone in E" with
G:S —EM. IfGis A—concave on S, thenfor every p € (-A*) we have that p! G is concave
on §.
Lemma 2.7: Let S be a convex set in E™ and A be a closed convex cone in E" with
G:S - EN. If, for arbitrary pe A*, p!G is concave on S, then G is (—A) —concave on S.

We now state precisely what we mean by a multi-payoff, interactive n—person game, and

then present the notion of T-nondominated efficiency for such games.

Definition 2.3: A multi-payoft, interactive ("cross-constrained™) n—person game in

normal form is given by a set of players N = {1,2, . .., n}; n nonempty sets S| c Ek(1), the "a priori"
strategy sets of the players; a real-valued vector function G = (g1, ..., gm): S' x...xS" - E™,

. i i
the interactive ("cross") constraint function; n—real-valued vector functions U' = (uy,...u):

s! x...xS" — Efthe vector payoff functions of the players; a convex cone K in EM, the
constraint cone; a convex cone W in Ef, the dominance cone; and X (K) = { x= (x', ..., x") :
G(x)eK, x eS8, i€ N}, the interactive strategy set. Such a game will be denoted by

r={xK,wu' ... u"}




In a mutti-payoff, interactive n—person game I, for any x = {xi‘ie N} €S = Slx...x8",
TcN,andy = {yi: i€ T} € ‘XTSi. let (x | y) denote the element of S obtained from x by replacing
ie

x! by yl foreach i € T. The concept of T-nondominated efficiency for such games, T, is
summarized in the following definition.

Definition 2.4: A point x e€X(K)iscalled a

(1) "T-nondominated efficient solution” of I' associated with W if there does not
existany point y € X_ S, with (x |y) € X(K) such that
ie

u(x)eu(xly) +W foral ieT
u(x) # ui(xy) forsome je T
(2) "Nondominated equilibrium point” of I' associated with W if it is a

T-nondominated efficient solution for all subsets T consisting of one element.

(3) "Nondominated efficient solution” of T associated with W if it is a
T-nondominated efficient solution for T = N.

Evidently our nondominated equilibrium point of ' associated with W is a generalization
of the Nash equilibrium point to the "games"” with interacting strategy sets and vector payoff
functions which were initiated and discussed in Charnes, Cooper, Wei and Huang [3]). The
nondominated efficient solution of I' associated with W is the corresponding generalization of
vector or Pareto efficiency (or optimality). The T-nondominated efficient solution thus runs the
gamut from Nash equilibrium generalizations to Pareto optimality generatizations, and no
intervening point to set mappings are needed for their specification.

In (3] Charnes, Cooper, Wei and Huang introduced dominance cones for the study of
mutti-payoft, interactive n—person games, and explored the notion of a nondominated

equilibrium point of T’ associated with the dominance cone W.

The focus of the present paper is on T-nondominated efficient solutions and
nondominated efficient solutions and nondominated efficient solutions of I' associated with W ;
where we begin, in the following section, to examine some essential properties of such solutions.
We conclude this section with the following two definitions.




Definition 2.5: T = { X(K), W;u',...,u"} iscalled a(T-W-K)-quasiconcave game
it the following four conditions hold for alt i€ T:

(i) S' is aconvex setin EK()
() ul(x,...,x,...,x") is (W) —quasiconcave with respectto {xi:j €T}

€ xrs' for fixed (x*:k € NT} € X S'
I keN.T

(i) u (x',....xi ..., x") is continuous on ){‘Sj
le
(v) G (x',....x,...,x") iscontinuous and K-concave on )%Si
le
Definition 2.6: r = { X(i),w;u',...,un} is called a (T-W-K) - concave

game if conditions (i), (iii) and (iv) of Definition 2.5 hold for all i ¢ T and in addition, forallie T,
ui(x!, ..., xi, ...xM) is (-W) - concave with respectto {xi :je T} e x'S! forfixed (XX ke N-T}
jev

e X s*.
keN-T

3. Some Essential Properties of T-Nondominated Eftficlient Solutions.

Conditions for the existence of T-nondominated efficient solutions, and further
properties of these solutions, are presented here in the form of several theorems.

Theorem 3.1: Forthe game T'= {X(K), W:u',...,u"}, let W be acute and S' be
compactforall i € T N. Thenthere exists at least one x € X (K) which is a T-nondominated
efficient solution of I' associated with W.

t |
Proof: Since W is acute, ItW* = &. Let pe IntW* and Up(x): = P Z;U (x).
e
Consider the following system

(P) Max Uy, (x) s.t. x € X(K).




Since X (K) is compact, (P) has at least one optimal solution, say x . To show that x is
a T-nondominated efficient solution of I' associated with W, assume to the contrary that there
exists yex S with (x |y) € X(K) suchthat

.ieT
U (X) € U (x]y) +W forall ie T
U@ 2u &1y +W forsome je T.
Then
ptui(x) sp'v (x ly) and plU() < PUK Iy) .
Hence

pt Zuiﬁa < pt Zui(ily)

ieT ieT
Thatis, up (x) < up (x 1Y),

which contradicts x is an optimal solution of (P).

Q.E.D.

In the following theorem we denote the Fréchet gradient of the interactive constraint

funtion G (x) with respect to {x':] € T} € xSi by

jeT

VTg‘I(x)
V,Gx= :
VignX)
where

V16 (x) ={(dgi(x)/9xj),j € T} isarow vector.




—— T T T

Theorem 3.2:

Let I be a (T-W-K) —concave game with W acute. If x € X (K) satisfies

S*DEVT ui(x) +y'VT G(x) =0

(3.1)

forsome{p; : pi € ItW*,ie T} and y € (-K*), then X is a T-nondominated efficient
solfution of I associated with W.

Proof: Assume to the contrary that X is not a T-nondominated efficient solution of I

- i
associated with W. Then there exists Y € .XTS with {x [y) € X (K} suchthat
ie

(e uK|y) + Wioral ieT
ulX) % U X|y) + Wforsome jeT,

and hence

"eri' U'&Mi‘szHYIV) 53)

Since, for allie T, u' and G are (-W) —concave and K-concave, respectively, with respect
to{xi:ie T}, then by Lemma 2.6 P! u' and W G are concave with respectto {xi: ie T}).
Hence
Piu')y)  Piu'@+ PIVruil f-xy foralieT
FGKIY) s FGR) + VI VGR) F54 = v VG -3

and
TP uRY-X4 =-7% G [y-x9
ieT
< 4Gy <0
where
;T' {;' Ve T}.
9




TpuIF) s T puE+ Y pWu (X) (F-%r)

ieT ieT ieT

< ¥ plu't
ieT
which contradicts (3.3).
Q.E.D.

Assumption (A): Forany Xe X(K).ye X S'andfeX S, et
ieT ieT

U = Min (U (%1%, ¥ ®19) ), Ue=MinU ®1%), Ue=MinU (x[5)
€T jeT

then A (Uc- Ub) + (1-3) (U~ U)eW foreach A e [0,1].

Lemma3.1: Let T be a (T-W-K) —quasiconcave game and W S E/_beacute. If x € X (K)isa

T-nondominated efficient solution of I associated with W and Assumption (A) holds, then there
existp,e W*, i € T, notall zero, such that

T pui(x)2 ¥ pui(Xly) foralye XSt with (Xty) e X(K)

ieT ieT
Proof: Consider

A ={{Zi:ieT} : there exists some y € X S with (X]¥) e X[K)
ieT

suchthat z' — Minu/(X|p+u' e W.
jeT

forallie Tand z* — Minu'(x|y)+u* (x1=0.
jeT

foratleastoneke T }
First we need to show that A is a convex set. Accordingly, let {3 i€ T} and{z';ie T}

liein A. Thatis,thereexist y and v in XS' with
ieT

10




(ﬂ; )e X{Kland (x|y) € X (K suchthat

¥i~ MinulX|y)+uixleW foralieT
jeT

2% Minu'(X |y )+ " K)20 forsome koe T
jeT

and
'z\i-—hiﬁi?u'(ﬂ?) +u@eWifralie T
<
'ik'—kjdi?u'(im +u"™ () 20 forsome ky € T
e
Forany 0 <A <1 we then obtain
Az o+ (1-2) ’ii—[lhjﬁei{\u'(ilgh (1- A.)Mi;\uj(ilfl)]+ ubd e W foralli e T.
Since T is a (T-W-K) —quasiconcave game we have
Min {u‘('ilf ), u%i['y‘)} —ui[k(ﬂ; } +(-A) (ﬂ?)] € W.
Let ul = Min{u'(¥1§) . u'(X(%)]
e = h'ﬁeipui(il)”)
G = '\]ﬂel;\ll (xiy
Hence
A2 +(FN) 2 -[ A0S -ud) + (F) @e-ub)]

—U{l { ?IS’/ y+(1-A) (§|9)] +UX)e W forallie T

11




and therefore by Assumption (A),

Az 4‘(1-1)'z"i—ui [Mil?h(l—k)(iﬁ)]-» u'bd e W foralli € T.

By Lemma 2.1 we have
AR (N 2% - ue [ARIP) + (FA) ®I)] + v 0
that is,
b At \
1{2 ZIET} + (FA) {z :i€Tfe A

Hence A is a convex set.

Clearly, 0 & A, so by the convex separation theorem there exist pj, i € T, not
all zero, such that

Y piz'<0foral {zi:ieT} e A
ieT

i R
Forany Y€ 'é(TS with (x]y) € XIK), w'e W, i€ T, not all zero, and A > 0, set
\

7=y (ily)-ui&h 1wi.
Then
{zi : €T} e A and

Z{p.‘ui(ily) —gp.'uib'da« A3, piw's0.

Hence pie W*,ie T.

Letting A — 0%, we then have

T plu'Eiy £ T plu®
ieT ieT

12




that

foral ye X S with X|yleX(K .
ieT

Q.ED.

The following lemma, whose proof parallels that of Lemma 3.1, is also

useful in more general contexts.

Lemma 3.2: Let I' be a (T-W-K) —concave game and Wbe acute. f X e X (K) is a

T-nondominated efficient solution of T associated with W, then there exist p; € W*,ie T,
not all zero, such that

by p.'ui(i) ZZP:Ui(ﬂY)

€T €T

forall ye Xs with &ly)eX(K).
ve X

Now for fixed x € X (K) let

Dylx) = {y e_)gSi cxly) € x(K)} .

Theorem 3.3: Let x e X (K) . If there exists {pj: i€ T} with pj € W* such

i€V

T,PluRTPE for att Y€ X S witn BIYle X (K)
i€ €

then

Dt
{Z PV u (i‘r] eT" (D1 ), X7)
€T

Proof: For any h e T{Dr{x) X1}, we need to show only that

(;T p! VTu‘m) h<o.

13




Thus, let {yK} c DT (x) with kli_f’nwy“= Xr.and,> 0 with k“_’:‘”lﬁ 0 such that

h = fim A (y*- Xy

—> o0

Since y plu'®|yH = S plu'R + FpiviuR -7y + 0|y
€T

€T €T

And prui(?ly‘) SZD.'ui(I) '

€T €T

we have
3 PIVU® ('~ +0(ly*-X) s 0
€T

and therefore
sz.'v,u'm Ay*-X9  +A,.0(1y*-X11) < 0.
€

Letting k— o=, we then obtain

€T

| (2 p! VTui('ﬂ) h 0.

K QED.
Assuming x € X (K) . let
t .

i CT()?)-{(VTGGO) Yive K with'Y'G('i)-G}
L

J Lemma 3.3:") Let XeX (K)andG (x)be Fréchet differentiable at X with

respect to {x :ie T}. Then
| T(0:30.%4 <[-c)

14




By Lemma 2.1: T*(D«(x), x;) o{~C7fx}) . In the general case, Ct (X is not a closed
set, but if we let K = E,™and T = N, then we have

Cv(i)-{ Y v, V9 v, > 0, EI}
€T

where I = {i:g;(X) =0, 15is m}

We know that Ct (X is a closed set (a simple proof is given in [6] ). Thus we

can make the following definition.

Definition 3.1: A point x e X (K) is said to be a "T-regular point" of the
constraint set X (K) it T+(D{), %) c(-C+x) -

Theorem 3.4: Let I' be a (T-W-K) —quasiconcave game and W D EX be acute. If
x € X (K) is a T-nondominated efficient solution of T associated with W and a T-regular

point of X (K), and Assumption (A) holds, then there exist pie W". ie T, not all zero,
andye (-K') such that

Y piV,u R+ y V;GR=0
ieT

YGH® =0
Proof: By Lemma 3.1 there exist pje W', ie T, not all zero, such that

TPu®2 Y pluly) forall ye X S with
€T €T ieT

(ily)eX(K)_

By Theorem 3.3 we have

[%p.‘vTu‘M]'eT'(Drm X7

15




Since x is a T-regular point, we know that

[.?Tp.‘vru'm]'et—cr ®)

Then there exists Y € (~K') with Y' G (X) = 0 such that
1 i t !
[%p,v,u n] -~ (v,6®)'y,

that is,

zpit VTui(x") + yVTGm=O

€T

Y6& =0

QED.
Evidently by Lemma 3.2, Theorem 3.4 also hoids if I'" is a (T-W-K) —concave

game with any acute W and we do not need that Assumption (A) holds.

The foliowing two useful theorems can be derived now directly from Theorem 3.2
and Theorem 3.4.

Theorem 3.5: For all subsets T consisting of a single element, let T be a

(T-W-K) —concave game with W acute. If x ¢ X(K) satisfies (3.1) and (3.2) then x

is a non-dominated equilibrium point of I' associated with W.
Theorem 3.6: For all subsets T consisting of a single element, let I be a

(T-W-K) —quasiconcave game with acute W > EL . If X ¢ X (K) is a nondominated
equilibrium point of ' associated with W and a T-regular point, and Assumption (A)
holds, then for any fixed T consisting of one element, there exists nonzero p € W* and
Y € (-K*) such that

p‘VTui(i) +y‘VTG(i)=o yforie T

YG(x) =0

16




If we use that I" is a (T-W-K) —concave game, then the result is also true without the

Assumption (A).
4. An lHlustrative Example

h We now turn to the example given by Harker [5), the two-person game depicted
in Figure 1. Each player chooses a humber x; between 0 and 10 such that the sum of

these numbers is less than or equal to 15. Harker's utility functions and constraint
function are defined in our terms by:

u'fxy,xg = 34x,-x'~ g XXz
2
u (xy,xg = 24.25x2—x§— %- X1X3
gxy,x3 = 15-x,-x;.
Here, W = E!, K = E., §'=[x;:0 2 x5 10},
2
S" = {x:6<x2< 10}, and
2
X(K) = ( (x5, %2} 1 xy€ s, xz€ S, g Xy x5} 2 0}-
Since g (x;, x2) is linear, for all subsets T consisting of a single element and any

(x1 x) € X (K), (x1 xp) is a T-regular point. Further, it is easy to show that if T

consists of one element, I = <X (K),W;u1.u2} is a (T-W-K) —concave game

(otherwise it is quasi-concave). Hence, by Theorems 3.5 and 3.6, the nondominated
equilibrium points of T are points which satisfy (3.1) and (3.2), and vice-versa.

From (3.1) and (3.2), we need to find points (x1, xz) in X (K) that satisfy

] the following equations:

34-2x,- % X-y, = 0

24.25-2x,- % Xy=y, = 0

17
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Y, (15-x,-x3 = 0 (4.3)
72(15—X1—XQ = 0 (4.4)
Yy Y22 0.

It x; + x2 < 15, then by (4.3) and (4.4), we must have y{ =Y, =0. (4.1) and
(4.2) then reduce to

34—2x,—g—x2= 0

24.25 - 2x,— % X; =0

with solution ( x; ,X2) = (5, 9).

If x; +x2 = 15, we may substitute 15 — x4 for xo in (4.1} and (4.2), and
using Y4, Y> 2 0 we obtain x4 > 9 and x¢ 2 23/3. Since x1 > 9 implies x1 2 23/3, the
interval [(9.6), (10,5)] satisfies (4.1) through (4.4).

Therefore, by Theorems 3.5 and 3.6, the set of non-dominated equilibrium
points of I" (Nash equilibrium points in this case) is comprised of the point (5, 9) and the interval

[(9.6),(10,5)] . as shownin Figure 1.
X2

? Solution Set

10-

® O
.

5 X (K)

Figure 1




As is well known (see [4]), Nash equilibria in general are not Pareto efficient
solutions. We now show that none of the Nash equilibrium points in the above example
are Pareto-efficient and then proceed to determine the locus of Pareto-efficient points.

Take T = N = {1,2}. Since

8 5

-’2, e 0- -

1 3 2 2 4
Vau'=| g and vy®=| ¢

-3 0 e -2

are neither positive semi-definite nor negative semi-definite matrices, u' and u2 are
neither convex nor concave functions.

We first show that u' and u2 are quasiconcave on ST x 2. Note that ui (x1 , X2 )
200ns'x $2 fori = 1,2. Hence:

So .{(x,,xz)e s'xs?%: ulxy,x32 a}

2
Sa -<(x1,xge s'xs?: uix,.xz)z a}
are convex sets for all a < 0.

For all a > 0we have

Se -{(x,,xge s'xs?: ullxy,x32 a}

-{(h.xz)e s'xs?: xzsi (34—x, - &) }
8 X

Si s{{x,.xz)e s'xs?: o xy.x32 o.}

2 4 o
- , §'xs%: x,s2 (24.25-x, - %) }
{(x, xj € X X4 5 ( 2 Xz) }
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1 2 .
Clearly, S, andS are convex sets, so by Lemma 2.3 u! and u? are quasiconcave

12
on §Sx§ .

Then by Theorem 3.4, if (x1, x2)e X (K) is a Pareto -efficient solution then there
exist (A1, A2) =2 O with (A1 ,A2 ) =(0,0) and Y2 O such that

A, V; u' (xy,xd + A,V u? (X1, x3+yYVy g (x1,xd =0

y9(xy,x4 =0,
that is
11(34—2x,—%x"~)+ 12(-%"2)—7 -0 (4.5)
5
K,(—g-x‘)+x2(24.25—2 Xz—'4—x1) -y =0 (4.6)
‘Y{15—X1—x2 =0 (4.7)

(i) For the point (x1, x3 ) = (5, 9), substitution in (4.5) - (4.7) leads to
¥ = A1 = Ay = 0. Therefore, the point (5, 9) is not Pareto-efficient.

(ii) Consider the internall = [ (9, 6), (10, 5) }. Substituting 15 — x1 for
x2 in (4.5) and (4.6) we obtain

2
-6 k1+ ‘3—)\,1X1 -74_5142"' % xe1 = ‘Y

= (4.8)
8 2 3
“F R A g A oy (4.9)
from which we derive
36 - 20x
Ap = ——— A,
3x; - 78 (4.10)

If Ay = O,thenAz= 7Y =0. If A =0, thenfor 3 < x4 < 10 we also have

A1 = 7Y = 0. In neither case will any point in the interval I be Pareto-efficient.
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Substituting ior A3 from (4.10) in (4.8) we obtain

_ =23x; + 350X 207
Y2 =

A
3x,- 78 ' (4.11)

which is less than zero forany 9< x1 < 10 and A1 > 0. Thus, no equilibrium point
in the interval I is Pareto-efficient.

The Pareto-efficient points for this example constitute in part the intersection of
the constraint set with the locus of points of tangency between the two players' contour
of constant utility. This is the "contract curve" in economics parlance; any departure
from this curve cannot improve the lot of both players and will leave at least one player
worse off. There are also other Pareto-efficient points stemming from the fact that the
sum of 2 quasi-concave functions need not be quasi-concave.

The locus of points of tangency is given by V u'+AVuie0torazo0.
. 1 8 8 2 5 5
Since V u -'(34-2X1—3 X2:-3 xy) andVu = (‘;Xz- 24-25-2’(2-4—*1) , we then
have

34—2X1-%X2—%x Xy = 0

(4.12)
24.25% 24 X2 - 2A %1 -2x; = 0
: 4 3 (4.13)
Eliminating A and collecting terms we obtain
2 2
4947"‘546X1+15x1 + 24X|xz—796X2+ 32X2 = 0 (414)
Hence the set of Pareto-efficient points is given by
2
P .{(x,xg € S'xS%: 4947 546x, +15x,+ 24X, - 796X, @15)

2
+32x2= 0, x1+x2 < 15}U{(x,.x9:05x150.63.x2-10}

U{(x1,x9: x4=10,05x,<2}
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Figure 2 depicts (part of) two representative contours of constant utility for
each player: (u',u2) = (41, 91), with point of tangency (x', x2 ) = (3, 6.5), and
(ul,u2) = (77.88, 65.27) with point of tangency (x!, x2 ) = (5, 5.03), to two
decimal places. The locus of non-dominated (Pareto) efficient solutions extends from
(x', x2) = (0, 10), to (x', x2) = (10, 0), with corresponding utility values
ranging from (u', u2) = (0, 142.5) to (u', u2) = (240, 0).

The non-dominated equilibrium point (x!, x2 ) = (5, 9) corresponds to utility
values (ul, u2 ) = (25, 81), while the interval [ (9, 6), (10, 5) ] corresponds to the
utility interval [(81, 42), (106.67, 33.75) ].

5. Concluding Remarks

We have presented a new concept of "T-non-dominated efficiency" for muilti-
payoft n-person games with interacting strategy sets. Our notion of T-non-dominated
efficient solutions subsumes generalizations of both non-dominated equilibrium points
and non-dominated efficient solutions, and thus covers the spectrum from
generalizations of Nash equilibria to generalizations of Pareto efficiency or optimality
for intersecting or cross-constrained strategy sets.

Several theorems have presented essential properties of T-non-dominated
solutions and non-dominated equilibrium points, and we have illustrated their
application by means of a two-player examp!e in which only one generalized Nash
equilibrium point can be found by variational inequality methods. In contrast, our new
solution concept and theory enables us to determine easily all the generalized Nash
equilibrium points for this example, none of which is Pareto efficient, as well as the
locus of Pareto-efficient solutions.

Because of non-uniqueness of the generalized Nash equ"ibrium points any one
chosen is not automatically the “best” from the point of view of the compeiing parties or
"society". Morecver, Nash equilibria in general are not Pareto efficient, and hence will
not necessarily be optimal or desirable from the point of view of society. For many
purposes in economics Pareto-efficient solutions are needed.
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For example, while seeking to preserve competition, the overalt good of both
consumers and suppliers requires a balance or regulation of competition which amounts
effectively to a cooperation imposed by the regulatory agency. Pareto-efficient solutions
thus embody notions of "collective™ or "societal” stability, in which no improvement can
be provided to all parties simultaneously and in which a departure by any party from a
Pareto-efficient solution necessarily results in some other party becoming worse off.

if (generalized) Nash equilibria are indeed the result of (unregulated)
competitive action, and such equilibrium solutions do not intersect with Pareto-efficient
or other society-desired solutions, can regulation achieve this intersection?

Or is it possible (and desirable) only to achieve a weaker T-nondominated
solution? Evidently our new notion provides the important existence/flexibility
evaluations of what is possible.
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